If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2=129
We move all terms to the left:
a^2-(129)=0
a = 1; b = 0; c = -129;
Δ = b2-4ac
Δ = 02-4·1·(-129)
Δ = 516
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{516}=\sqrt{4*129}=\sqrt{4}*\sqrt{129}=2\sqrt{129}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{129}}{2*1}=\frac{0-2\sqrt{129}}{2} =-\frac{2\sqrt{129}}{2} =-\sqrt{129} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{129}}{2*1}=\frac{0+2\sqrt{129}}{2} =\frac{2\sqrt{129}}{2} =\sqrt{129} $
| b/7+1/9=1 | | 9|9-8x|=2x+3 | | 5+10n=45 | | -4K=-3k+6 | | 10+2(5h-6)=3(2h-6) | | 6h-8h+9=10 | | 2x+2-x+4=2-3+4 | | 9w^2-3w-50=0 | | -8(7+2n)=-2-7n | | -26=4u-2 | | x^2=-16-4x | | 2y(5y+0)=0 | | 2x+2-x=2-3+4 | | 3x/7+5/7=4/77 | | 8=2u+6 | | 5(m+3)-4(2m-1)=10 | | 12(a)+6=106 | | X+135=x+59 | | 3x+6+4x+9=4x+3x+12 | | 2|3x-1|=3|3x-1|-5 | | 6n+8=-8(5n-1) | | -6=-3(4+v)-3 | | 10x^2+49x+6=0 | | 1/2x+2.5=18 | | (a-4)=5(a=5) | | r^2=10r-21 | | -4(3a-2)=4-8a | | 7-2(5-e)=11+e | | 3x^2+6x=57 | | 5^2+58x-120=0 | | 2z2–27z+13=0 | | 3/4(12c-4=15c+15 |